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Bruce H. Faaland

and

Frederick S. Hillier

1. Introduction

Because of the significant computational limitations of integer pro—

gramming algorithms for obtaining an optimal solution , there has been

considerable research in recent years on heuristic algorithms for efficiently

seeking very good solutions that am not guaranteed to be optimal. For ex-

ample, such algorithms have been developed by Reiter and Rice [10], Echols

and Cooper [1], Senju and Toyoda [121, Hillier [6,5], Roth [11], Kochenberger

McCarl, and Wyman [8], Ibaraki, Ohashi, and Mine [7], and Toyoda [14]. Al-

though their primary motivation was to provide an effective way of dealing

with the frequently encounterad integer programming prob lems that are beyond

the computational capability of exact algorithms, heuristic algorithms also

can be very useful on. smaller problems by providing an advanced starting solu-

tion to accelerate an exact algorithm. For example, the availability of an

advanced starting solution has been exploited very advantageously by the

authors in Hillier ’s Bound—and—Scan algorithm [4] and Faaland and Hillier ’s

Accelerated Bound-and—Scan algorithm [2].

Some of these heuristic algorithnis are expressly designed for binary

(0—1) integer programming while others deal with the general integer linear

programming problem. The algorithms developed by Hillier [6,5] and extended



by Ibaraki et al L7] fall into the latter category. One of their distinc-

tive features is that the search [or good integer solutions Is focused in

the nelghbcrhood of the optimal solution for the corresponding linear pro—

gra~~ing problem (i.e., the original problem except for deleting integrality,

restrictions) obtained by the simplex method . Specifically, the following

three—phase approach is used . Phase 1 identifies a path leading from the

optimal linear programming solution into the interior of the feasible region

(when ignoring integrality restrictions). (Hillier originally proposed a

linear path and Ibaraki et al extended this to a piecewise linear path.)

In conceptual terms, Phase 2 then moves slowly along this path, using it as

a t
~home base” from which to search for a nearby feasible (integer) solution.

Phase 3 attempts to move from the feasible solution obtained to a succession

of better ones. The final solution obtained is the desired approximate solution.

One device for attempting to improve further ‘the quality of the approxi-

mate solution is to generate a number of distinct final solutions. The most

effective means that Hillier [6,51 found to accomplish this is to repeat Phase 2

and 3 by moving down the path in Phase 2 beyond the point at which the previous

Phase 2 solution had been found . He also found evidence to indicate that the

location of the Phase 2 solution relative to the constraints may have a strong

influence on the quality of the solution determined by Phase 3. That is, the

degree of maneuverability allowed by the Phase 2 solution seems to be an impor-

tant consideration. These two factors, substantial movement along the Phase 1

path and degree of maneuverability, indicate that the choice of a “home base”

path to follow into the feasible region in Phase 2 deserves careful attention .

The selection of this path is the subject of this paper.

2 
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2. Notat ion

The problem under consideration is to ~- huuse X1,X ,,... ,X so a~ 10

n
(1) maximize Z = Z c x ,.,

j=l j J

subject to

(2) ~~ a . . x . < b ., i 1, 2 , . . .  ,m

(3) x~ > 0, j  1,2,... ,n

(4) x, integer j = 1, 2 , . . .  ,n ’ ,

SOX I .fp . .. ,x need not be an integer. Let x be the n—vector (x1,x2,. . .,x ) ,

and let be the optimal linear programming solution obtained by the simplex

method by neglecting the integer constraint (4). Define

(5) B = ij  j j  < n’ and xj’~ is a basic variable),

and let N be the number of elements of B. Given any x, let x8 denote the cor-

responding N—vector whose components are x~ and that j  c B. Finally, let

d .(x) be the Euclidean distance from x to the hyperplane 
.~~~ 

a~ .x . b., and
.i=l

when projecting from x—space to 
~B~

space , let dj(XB) be the Euclidean distance

from
~~B 

to the hyperplane ~ a1.x = b~ — 
~~ a1.x . Thus (after introducing a

jeB ~ j~ B ~
sign convention),

1n n
(6) d1(x) (b

1 
— ~ a1.x )/ (  

~~ a~ 4) , I = l,2,...m
j~ l 

•~~ ~ j.1 ~

1
n 2 0

(7) d1
(x ) (b1 

— E a1.x ) f (  Ea 1 
)~ , I l,2,...,m .

j=l jcB

3
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3. RevIew of Previous Methods

Hillier [6 ,5) originally proposed and tested two methods for choosing

the interior path In Phase 1. Both methods are based on the following general

approach. First, use the simplex method to obtain ~~~~~ Then, for each func-

tional constraint i In (2) tha t is binding at (i.e., whose slack variable

is nonbasic for ~~~~ replace b1 
by

(8) b~
2
~ b~ 

—

for some suitably chosen scalar > 0. For this modification of the linear

programming problem (1—3), use standard post—optimality calculations to obtain

the new solution ~~~ having the same basis as ~~~~~ Note tha t also is

feasible for the original linear programming problem (1—3) except perhaps for

some of the constraints that are not binding at x’1
~~. Therefore, the objective

of Phase 1 is fulfilled by letting the line segment between and X~~
2
~ be

the desired interior path.

Method 1 sets

(9) = 4 Ej cB

so that every basic variable that is restricted to be integer by (4) can be

changed by as much as 4 (as when rounding to the nearest integer value) with-
out violating the original constraint i in (2).

Method 2 sets
11

l~~
l 2 2 2

(10) A 1 ~
( ~ a1,4

) N
j=1 ••‘

so that

(11) d~ (x~
2
~) - ~~~~ 

_ .

-

~~~~~~~~~~~__ _ _
~
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These methods are illustrated In Figure 1 for a problem with functional con-

straints 4x1 
< 5 and 2x1 

+ 2x2 < 5, where the objective function is such that

both of these constraints are binding at

‘2

2x i f 2x 2 ~. S

-~ 
(1)

( 1~~~ , 2 5 ; ~~~~~~ _—‘

( 2 )
, for

:1,-i I 1
•3 3 (1)

~/ ,~ ) 4x 1~~~~ S
For  M e t h o d  I

4

0 S

I
6 2 4 1 /

I .  lnt r r l o ,  ‘.~1h, 1 pr~’vI  ofl’. P) is~’ I m e t h o d s .
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Both at d~-. have the key proper~y that ~very ~~~~ such that J ~ B

can be rounied to the  neares t  intt~~ -r va 1 u~ w i thou t  v ; .~i .~t l ng  any of the

original c o n s t r a i n t s  ( 2 — 3 )  tha t  are b inding at  x~~~. ( ‘ I l l s  holds for Method

2 since the i~w ’ 1 i d e an  d i s tan ce  between th i s  rounded so lut ion  and is at

most 4 N 2 .) T h e r L r o r t ’ . ~ l uc’~ Ph~~~e 2 begins s~’ar ch  ing l u r  f easib l e  so lu t ions

by rounding so lu t ions  1- . in,~ on the  Phase 1 i nt er i o r  pa th , this prope r ty

guarantees th a t  a rounded solut ion satisf ying at least the binding constraints

will be obtained hv the time X~~
2
~ is reached (and usually much sooner). If

some such solution that also satisfies the nonbinding constraints can be

found , it will provide the desired starting feasible solution for Phase 3.

Broadly speaking, the basic objective in choosing an interior path

~-e It lead into the “middle” of the feasible region where it should

E ~o locate a good feasible solution , and where the located feasible

‘.u~,uL ins should provide the greatest latitude for finding improved solutions

in Phase 3. Both methods appear to meet this objective qui te  well .  In fact ,

it follows from (11) that  the Method 2 line segment is equidistant  from the

func t iona l  constraint  hyperplanes that  are binding at ~~~~~ Method 1 does

not have th is  p rope r ty ,  but it does consider the additional relevant question

of j u s t  how ta r  rounding a solution can move i t  toward a given hyperp lane .

Thus , the  Method 1 path  can be thought  of as equid is tan t  from the binding

hyperplanes when the distance is measured in the direction that the maximum

possible amount of rounding can move a point toward the given hyperplane.

The next section evaluates more critically just how well these methods

actually meet this objective when it is defined more carefully.

b
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Evaluation mi f Previous_Methods

The two previous methods discussed in S5’i t iun ~ both  focus on extreme

cases. What is the largest possible distance that rounding can move a solu-

tion? (Mothod 2) What is the largest possible increase in the left—hand

side of a ‘~unctional constraint that. can resul t iron ! rcunding .~ (Method 1)

This raises the question of just how these extreme cases compare

with the actual cases that normally would be occurring on a statistical

basis. This Is evaluated below , fIrst in regard to the distances moved by

rounding, and then the changes in left—hand sides. Implications are then

explored.

To study this question statistically, assume that the parameters of

the problem (1—4) are drawn from some underlying probability distributions .

Assume, without loss of generality, that the ordering of the variables is

such that B = {l,2,...,N}. Then, for some given method of calculating the

A 1, needed to determine (see Section 3), let the random variable :~ . be

the change in x~~ resulting from rounding it to the nearest integer , for

j = 1,2,. ..,N. Under most circumstances, one would expect the fractional

parts of the to be dispersed rather uniformly over the unit interval.

(For certain highly structured problems with integer—valued parameters , the

may have discrete distributIons with considerable mass at zero. Such

problems tend to be relatively easy to solve, however, and so are of less

interest for heuristic procedures.) Therefore , it is assumed here tha t

X1,y2, . . . ,X~ are independent and identically distributed according to a
uniform distribution ranging from — 4 to +4 , so that this common distribu-
tion has the density function

7
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(1 , for -4 < x <
(12) ‘(x)

O t . ! W i H e .

~~~ let the random v a r i a b l e  I) be th~ Euc~ ijean dis~ iaee  t~iat

‘ Iu Vt s due to r c u n~~.ing ~~~ to t h ~ ne a rest integt~r f o r  j 1,2 , . . . ,N, so

tha t

~13) D = (
J

Theorem 1: As N grows large , the probability distribution of I) tends t~~

a normal distribution with mean and variance ,

(l~) E(D) = (~ ) r , Vai ~~ =

Proof: Let the random variable Z have a normal distribution with mean

~ro and variance one, and let

N -
~~

I v ’ \ 2 ,N~~2
“ .~~ ~

j’ ~l2’
( 15) Z N 

~
- ö -

~

2 

— - —  , for  N = 1, 2 

Thus, letting -
~ denote convergence of a sequence of random variables in the

sense of pointwise convergence of their cumulative distribution functions ,

it is sufficient to show that

Z
N 

-
~~ Z.

It  is easily calculated that

(16) E(X~) = ‘j
~

- Var (X~) = -
~
j-
~
j’

8 
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The ret re , b:: th e t~~~ r.~ 1 Lim It Theorem ,

2 N
-~~ 7

I
I N 

~~
~18O~

No ’v cons t ruct  a ‘
~
‘
~~ ‘ b r  s rr les  expan s  i ; i ~ of the s q- :~~r t -  r o t  of

2 N
about 1t~ mean , E ( D  ) =

(17) D ( 2 
+ t(&)2

(D
2
~~~

) - 

~ ~~
2(D2 ~~~)

2

fo r  some ~ i n t e r i o r  tc  the i n ter v a l  j o in ing  D 2 and -
~~~~ (so ~ is a f u n c t i o n

of the va lue  taken Un by D2 ) . Consequentl y ,

1
, N~~2 2 NI) 

12
(18) ZN = 1 1 

— 

N ’

, i~~2 N ) 2
\ 601 

~l80

where

-~-[D~ 

12

C = 1(60)2(N )~; 
2 

_____

so l~: -~~

l440 (6O) 2N
~~~~

2
~N 

-
~ Z 2 .

9
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Now note that

r 1 3
3 1 N 2

2 

N 1
~
2 ~~(~~)2 Li + Nj  

-

~~ 
~ with probability one,

since

N 2 ND 12
2

Implies

N 
-
~~ 0 with probability one.

Therefore,

L
N 

-
~
- 0 with probability one,

so

Z
N 

Z. Q.E.D.

Although Theorem 1 gives asymptotic results, these also can be used

as approximations for even small values of N.

The Central Limit Theorem usually will give a reasonably good approximation

to the normal distribution for values of N as small as four or five. Fur-

thermore, an analysis of additional terms in the above Taylor series

expansion (17) indicates that the expresssions for E(D) and Var(D) given by

Theorem 1 should be within a few percentage points of the Lrue values for

10 
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values of N this small. This implies that Var(D) is essentialiy a constant

independent of N, even though E(D) essentially is growing proportionally

1
2

to N

It Is interesting to compare the range of possible values of D,

(19) 0 < D < 4 N
2

with the range of likely values suggested by Theorem 1. For example, using

the mean + nearly four standard deviations gives

(20) Prob { (
~~

)
~ 

— 4< D < (~~)2 + 4 } > 0.9998.

Thus, even though Method 2 focuses on the upper bound, D <4N
2
~ for all

practical purposes one can instead assume that D < (N/ 12) 2 + 4. Furthermore,

for fairly large values of N, the actual values taken on by D will tend to

1

be quite close to ~ 
2 58% times the upper bound used by Method 2.

Even more pertinently, Method 2 uses 4N
2 as an upper bound on the

distance that rounding a solution can move it toward a given functional

constraint hyperplane, and Method 1 uses a similar quantity. By contrast ,

D represents the ciistance moved in whichever direction results from the

rounding, so the resultIng decrease in the distance to the hyperplane is

likely to be much smaller than D. Therefore, a realistic statistical upper

bound on this decrease may be far smaller than the upper bounds used by

these methods.

11
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To study this question, let the random variable and D~

(i 1,2,... ,m) be the decrease in d~(x) and dj(xB) ,  respectively, due to

first setting x X~
2
~ and then rounding to the nearest integer for

j = 1,2,... ,N. Thus

N N
Z a .X Z a X .

(21) D~ 
i.:i_~____.1- , D~ = .1=1 ~

( E a . )  ( Z a . . )
j=l ij j= 1 ~

so
r 7.1 .—~ 1

~‘ 2 I 2
E a~

Di 
= CDi, where C = 

E a ~.jL i=i~~~

Theorem 2: (a) E(Di) = 0, E(D~) = 0

2
(22) Var(D1

) = , Var(D~) =

Prob {D < k — ~- } > l — -~- , Prob {D’ < k - ~--} > l — - - ~-— 

k
2 i —  iIi ~ 

— 

k
2

for any k > 1.

12
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~b)  ~s N grows lai~~e , it , a ’ . . } oe ce~~~ar i  l y is a un ifor cd y

bounded .~rrce such ~~~~ i t s  sum diverges , th en  c r i c  pr o h a b i l  i t v  dls’  r i but i on

of U .  and D~ ur ’~ to a ~~~~~~ st r 1~~i t 4 on w i t h  the re~ p ec t ’v e  meE.ns md
1 1

vat  ,~~~ ie~; c l  v~~n a-! ve

p r o of :  1 - r t  a) f~ i1j~~. i~~ ieci iatei y by d i r e - c t  calcula t i -3r .  of tb

momen :s aid t o .  ~- - J ~”o ” i~~~-,’ s  ~~c:~ca i ity .  Part  (b )  i s  a d i rec t  app l icat ion

of the  L~~r c  o r ~ - . ~:~ u i  -n  ~or be Cen t ra l  L i m i t  Theorem.

‘ 1 ’~. ..,onditui n ~~fl t t i i  a. .iraautor~ in Theorem 2h is not a p a r t i c u l . _ r i - ,
1j -

rescr~ c :ivu ~f l t .  I -ar  • ‘a r p l e , it. holds i t  these coeff ic ients  fo r  a given

constraInt can be thu~~ i~t ot  as being independently drawn from a single under-

ly i ng  p r ’b a o t J . f t - -~ dls~ r ibu t ion  tha t  is bounded but not  degenerate at  zero.

However , t h i  r .i~ o at which the  d is t r ibut ion  of U . and D~ approaches a normal

d i s t r ibu t ion  depends cons ider~ b 1y on the c~ispersion of the  a~~. . If a very

few coe f f i c i en t s  dominate the o th er s  in magni tude , then the normal approxima-

t ion will not yet.  be a good one . But if there  are many relatively large

coe t fic i .~ nts  of the same order cl magni tude , Ic will be au excellent ap prox i—

nation.

If N i~ :i1~~~o and the corriu~ appro~cimation is reasonable , then the

statistical upper  bounds ~-ecome ~cr-~ sirall indeed vumparcd tc  the bounds

used by Met~ ois 1. and 2. For exa ’nple , using t h e  mean p lus i ] ’ ~ s tan d a r d

deviatlLi -

(23’ Pr oL < C} > 0 .9997 , P r o t [D ~ ~ 11 > 0.9997.

See Feller 11 3, PP. 256—2581.

13
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Note that neither bound ever exceeds one regardless of how large N is.

By contrast , Method 2 uses the upper bound ,

1
1 ”(24) D .

and Method 1 uses

N

4 E I a j j l
(25)  D

~ 
<

( at .)
j= l  ~

(Observe that (24) and (25) gIve the same upper bound if N = n and the a1~

are equal , but that ( 2 4 )  is larger otherwise.) Thus, these latter bounds

can be many t imes too large to ref lect  realist ic possibility, and so lose

their  relevance for their intended purpose.

The implication is that each Li .~ in (8) can sometimes be made much

smal1.er in order to obtain an appropriate ~~~ e.g., by using (23) to set

1 1

(26) Li . = C( ~ a14 ) = ( E ai4)1 j=l  ~ j =l  ~

Then, if one wants to use X~~
2
~ directly to obtain a feasible solution by

rounding (bypassing Phase 2 ) ,  a far  superior solution may resul t .  Fur ther—

more , this solution is far less likely to violate any of the constraints

(2 ,3) that are not binding at x~
1
~ than are the rounded 

solutions resulting

f rom the larger 
~~ 

in (9) and (10) .

114

~



However , if  tb  f u l l  three—phase  p r ocedure  is to be used , then the

real signhicance ct Li1 
is not the resulting ~~~~~ but rather the direction

of the L ine segment leadIng from ~~~~ toward ~
(2 )

. That j -~, two methods

for setting the that differ h~’ ~~ ly a f ixed m u l t i p l i c a t i v e  constant (for

a given problem) actui l iv would he equivalent lU this respect  since the

Jirection would be the same. This is the case , for examp le , for the Li .

in (10) and th e Li . sugge~’ted by the statistical upper bound in (20). However,

note that the Li .~ in ( i ~~~) arc not equivalent to the Li . in either (9) or

(10) , so (26) does give a new direction for the line segment.

It is enlightening to reflect on the differences between (26) and

(10). At first gl a nce , they aç~~ear to be q u i t e  similar sinc~~, except for

(10) having the mul t ip l ica t ive  constant given in (11), they d i f f e r  only in

the limit of summation being n fo~ (10) and N for (26). However , this minor

symbolic di f f e r er v : e  o~~sks vo ri1~ j . r  ‘i~erh odo1 o.~,i r~~i ‘II f f ~~r~ nt-es .  First , (10)

gives as much influence to the intr-ger—restricted variables (4) that arc

nonbasic at 
~~~+1’~~ ±2’

” ,~~~,) 
;
~s to these that are basic (x1,x27...,i~~),

even though these nonbasic variables are irrelevant for rounding solutions

between •~
(1) 

~od (and play little role thereafter in Phase 2 ) .  Second ,

(10) also gice .s  as mu : ~ intluence to the variables that are not integer—

res t r i c t ed  (x ,~~1 , x ,+2 ,  ~~~~~ even though these variables play only a

secondary r o i c  at host in any vcrsiorts of Phase 2 developed to da te .  The

search for go od feasible solution in Phase 2 takes place primarily in X
B
_

space (using the orthogonal projection onto this coordinate hyperplane from

the parallel hyperplane passing through the current point of interest on the

line segment between and ~~~~~ Therefore , these d i f f e r e n c e s  suggest

some m a j o r  drawbacks in Method 2 , which is based on (10) .

i~;

—I--—-
- — - —-.- —-- --- .

~
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To I l lu s t r a t e  these d rawbacks , suppose t h a t  n 3 f o r  the problem

w i °  N = 2 shown In Figure 1 , where the  additiui tl variable x enters only

into the 4x1 
< 5 constraint  as 4x 1 

+ 40x 3 ~ 5. This changes 42) for

Method 2 to 42) = 
~~~~ 

— -
~~

- 1~~ 2 , ~~
- + ~~

- V202) (—5.86 , 7 .36) , so that the l ine

segment from 41) now intersects  the x2—axis slightly above x2 = -i-. The

resul t is tha t  the essential ly i rrelevant variable x3 has greatly d is tor ted

the direction of the  Phase 2 search for  a good feasible solution by moving

it far  away from the cen ter of the feasible region in xB— space .

Therefore , it appears to b more appropriate  to focus on distances

in xB
_ space , such as the  D~ variables considered above , rather than distances

in x—space.  This conclusion leads to the new method presented in the next

section.

A New Method

Based on the above analysis , it is proposed that  be obtained by

making it equidistant  in xB
— space from the func tional cons traint hyperplanes

tha t  are binding at ~~~~~~~~~ Thus , the rationale is the same as f o r  Method 2 ,

except tha t  the dJx B
) quanti t ies  in (7)  now are equated ra ther  than the

d . ( x )  in (6) . To be completely analogous to (10) and (11) for  Method 2 , one

would set

11
1 2 2 2( 2 7 )  

~~~. 
-
~~( ~. a~ 4 ) N

j i B  ~

1 t~
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so that

(28) d1L42~) =

This would guarantee that can be rounded to the nearest integer for

every j e b and the resulting solution would still satisfy all of the con-

straints that are binding at However , (23) indicates that (28) often

is overly conservative, since

(29) d.(42~) = 1

can virtually provide the same guarantee (assuming the conditions of Theorem

2b hold). As already observed in Section 4, this statistical upper bound

on the D. leads to
1

1

(26) Li
1 

= ( E a~ )
2

jcB

With either (27) or (26), still would be calculated by the procedure

described at the beginning of Section 3.

Note that (26) and (27) actually provide equivalent methods (hereafter

labeled Method 3) since , for any given problem , they differ only by the

fixed mult ip l ica t ive  constant ~~N 2 
and so give the same direction for  the

line segment f rom to Nevertheless , when Theorem 2b is applicable ,

it is suggested that (26) be used , since its provides a more realistic

estimate of the max imum amoun t by which the line segment should need to be

extended from ~
l
~
l)
. In the rare instances where rounding this x~

2
~ (for j  ~ B)

violates a binding constraint , the line segment always can be extended a



~~—

little further. Rowever, when this rounded solution Is not feasible , the

usual explanation would be that it violates one or more of the constraints

that are not binding at so it would do no good to extend the search

further in the direction of the l ine segment. Therefore , failure to f ind

a feasible solution by this time would be a good signpost that the search

needs to be moved in another direction to take into account these relevant

nonbinding constraints. A procedure for doing this is described in the

next section.

Another reason fo r  p re fe r r ing  (26) over (27) is its strong superiority

for the following new opt ion for  streamlining Phase 2. Begin (as usual) by

checking whether rounding ( f o r  j  c B) provides a feasible solution .

If not , then immediately check whether rounding X~~
2
~ (for j € B) provides

a feasible solution. Only if this fails also would Phase 2 be resumed in

the usual way . (Another possibility would be to conduct the usual Phase 2

search from both of these rounded solutions before  considering any other

points on the line segment between and ~~~~~~~ The rationale is that

if rounding (and perhaps searching from there) fa i ls , then i d e n t i f y ing

a nearby feasible solution may be difficult , leading to a long Phase 2

process. By using the “tight” ~~~~ provided by (26), much time might be

saved by skipping down to where a feasible solution may be readily identi—

fled , while perhaps sacrificing li ttle in the quality of ihis solution (or

of the resu l t ing  f inal solution yielded by I’hase 3).

18
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6. Extension of Methods to Piecewise Linear Interior Paths

All of the methods discussed above focus  on the f u nct i o n a l  constraints

(2) and the nonuegativit ’~ cons t ra in ts  (3) that are binding at ~
(1) (i.e.,

such that the slack variable in (2i) or the variable in (3j) is nonbasic

for ~~~~~ by requiring that- rounding ~
(2) (for j e B) should sa t i s fy  these

constraints. There is no requirement. however, that either or the

corresponding rounded solution must (with even nigh probability) satisfy

all of the constraints (2,3) that are not binding at ~~~~~~~~~~~ If the rounded

solution does violate any of these constraints, then it becomes possible

(but by no means certain) that Phase 2 will f a i l  to f ind a feasible solution

in the general region between and X~~
2
~ Furthermore , if any of the

variables among x or the slack variables added to (2) are degenerate basic

variables at ~~~~~ the line segment from to may lead immediately

out of the feasible region. Although even this y
~ 

not prevent finding a

feasible solution, either complication would likely blunt the effectiveness

of the otherwise highly successful(opt ional)  technique proposed by Hillier

[6 ,5] of generating multiple final solutions in Phase 3 by generating a

series of feasible solutions in which each succeeding feasible solution

corresponds to a new point further along the line segment from to

These considerations suggest that  the choice of an interior path to

follow during Phase 2 preferably should be governed by the location of the

path relative to all constraints of the problem , not only those which are

binding at 
(1)

19
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An attractive alternative choice of this kind for the interior path

is the parametric solution to the linear program ,

(30) maximize r,

subject to

(31) 
~~
a
ij
x
j 

+ Li1
r < b ., I = 1,.. .,m

n
(32) ~~c x . = Z

j=1 ~

(33) x. > 0 , j = 1, .. .  ,n

(34) r > 0 ,

as Z is decreased from its value at ~~~~~~ Thus this extension of Methods

1, 2 , and 3 (labeled lP , 2P , and 3P , where P stands for “Parametric”) would

use the i r  respective defini t ions of L i .~, namely , (9) , (10) , and (26) (or ( 2 7 ) ) .

Because of the properties of parametric linear programming , the resulting

path for each method is continuous and piecewise linear , leading from

into the Interior of the feasible region for  the continuous version of the

original problem (1—3) .

Since there no longer is a fixed set of variables (corresponding to

B) that need rounding along such a path, one could adj ust the Li. each time

this set changes by redefining B and N in terms of the current basis instead

of ~~~~~ ‘this is not recommended , since it would considerably complicate

20
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the computations , introduce discontinuities into the path , and perhaps

create chain reactions of cl.dn,~ -s. However , the price being paid for

fixing the should be recognized. Sin~,e the current values of such re-

defined B and N may indeed cha~~ L with each new basis in the parametric

solution, the original rationale for choosing the fixed Li
1 
may no longer

be completely applicable. Fortunately, this doesn ’t really affect Method

2P , since its (10) is uninfluenced by B and N except for the same

1

multiplicati~ e fac to r  N 2 for  all i , which only changes the scale of r.

However , B does play significant role in (9) (Method lP) and in (26)

(Method 3P). The relative amount by which changes in B would change these

A .~ depends greatly on the size of N and the dispersion of the a1.. With

N large, and with a1. of comparable magnitude for different j t B, any

deviations between the Li1 
for  the “current ” B and the fixed at

should be of little consequence.

If N is not large , or if a few a~~. dominate the others in magnitude ,

then it is recommended that the integer—restricted variables (4) that are

nonbasic at be fixed at zero in (30—34) for Methods 1P and 3P. This

would ensure that the original rationale for (9) and (26) would continue to

hold (conservatively) along the entire path , since It would restrict  the

rounding of x to just 
~~ 

The drawback is that i t  decreases the f lexibi l i ty

in choosing an appropriate interior path in x—space.

It should be noted that  Ibaraki et al [ 7]  f i r s t  proposed this approach

for generating a piecewise linear Interior path in the context of Method 2.

(However, they also acknowledge [7 ,p.131e] the independent development of this

approach by the present authors.)
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the  ~)LeLCWi5C ‘inear interior path gent rdted by eai h 01 these three

m c t h o d s  fo l  L . ’ .~~ a “most i n t e r i o r” route  in t o  the  f e a s i b l e  region fo r  ( 1 — 3 )

in the ~;en.,c that , ~or every valu of Z , : l i e -  c o r r esp o n d i n g  pi~ i n t  a long  the

rou t c  maximizes the nilnijaum Eucl idean di~~t an, ’ to  the  boundary  h y p e r p l a ne s

fu i  the f u n c t i o n a l  c-~n s tr a in t s  (2), when this d f~~tance~ is measured in t h e

app ropri itti wa\ . For Method 1P , the distance to the hyperplane for constraint

i should be measured from the point in the direction of t h e  n—vector d such

that d . = +1 ii j ~. B and a.. > 0, d. = —l if J L B and a . ~- 0, and d . = 0
3 13 3 ij 3

otherwise. For Method 2P, the distance is measured in the usual way per-

pendicularly to the hyperDlane , as in (6). For Method 3P, it is done in the

same way as for 2P except in x
B
_space rather than x—space , as given by (7).

Thus , for Methods 2P and 3P, the point along the route for a given value of

Z is the center of the largest sphere which may be inscribed within the

func tional constraints in the appropriate space , subject to the side condi-

tions that the center must be nonnegative and lie on the hyp~ rp lane (32).

When Method 3P uses (26), the radius of the sphe re in ~~ -spacc is the optima l

value of r defined by Z. This also would be the radius in x-space for Method

1

2P if the unnecessary mult ip licative factor , -~~N
2
, were eliminated from (10).

The paths for Methods 2P and 3P are also motivated by the observation

m a t  every sphere in Euclidean N—space of radius r > +N
2 contains at least

one lattice point , namely , the point which results from rounding the center

of the sp here. (N here should be interpreted as the current number of vari-

ables that need rounding.)

22
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Supp osO r~ is t h e  radius of the  1~ . c g t - t  sp h er e  w i t h  nonnegat ive

center wh i~~L tuay oc inscribed within the r ’ I n ~’r i o n a l  cons 1r ;~~n t s  in x—space .

The center of th~’ spIie~~ ~~ 1 i~ ’i~ along Lh~ ’ Me thod  2P i n t e r i o r  iath. Fur—

1.

thern~~re , U r* > . ~ (r t ) 2 , t l t ~ heur i s t i c  prc~ Ledure is guat ant eed  to f ind

a feas ib le  s o l u t i o n  by proceeding  a long  thi5 interior path , since at worst ,

it will round x~ tc ’ f~ rid a teasible integer solution . ThCSL same remarks

also apply to Me cr o d 3P in x~—sPace . ~ ith r.’ rcp lac.~d by N (as defined i i i

Section 2), if t!t.~ Lnteger—restriced variables (4) that ire r .onbasic at

have been fix~~ at zero in (30—34). Furthermc re , whe r~ the conditions

of Theorem 2b hold , (3 )  indicates Lnat r* > C (for Method 2P) or r* > 1

(for Method 3~’) usually would be sufficient to find a feasible solution.

Another interesting property of the path generated by Method

iP(i = 1,2,3) is that , barr ing degeneracy , its first segment leading away

from lies along the  M~ t~ od I line segment. The strr~ith~ forward proof

of this statement follows from ti~~’ 1 ’nrresponden ’e between the  optima l basis

to problem (1— 3) and the in i t i a l  basis in the parametric problem (30—34).

This initial basis to (30—34) will have as basic variables r and all

variables basic  at ~~~~~ As Z is decreased , this basis remains optimal

until one of the basic variables is driven to zero at some critical value

of Z. At this point the basis changes and the interior path diverges

from the corresponding Method I line segment.

23

~~~~- 
‘
~~~~

-. --—. _ _
~~~~~

—
~~~~~~~~~~~~~~ ~~~~~~



.

~

— -- 
—u-.. 

7. Ano ther Extension r 0  i~ i e c ew i se _Linear  Interior 1’ath ’-~

The above approach tI ge R-rir tu g  p i e c O~ 1se linear interior paths

does requ i re a so f tware  package thaL includes p aramet r i c  p rogramming ,  as

wel t as the cons idcr ~~o.i e t~x O u ~. I ; I t  t ime  involved . ~f this is not convenient ,

thec the loltowing is a siin p ftr and quicker  a p p r o ar :h  t ha t  only requires  the

basic simplex method needed to o b t a in  anyway .

First , apply the simplex method to solve the fol lowing var ia t ion  of

(1—3),

(35) maximize r

subject  to

(36) E a . x . + ~.r < b
1
, i = 1,2,. ..,m

(37) x. > 0, j = 1, 2 , . . .  ,n ,

starting with the initial solution x Record the sequence of basic

feasible solutions generated in the process of doing this , and then connec t

each successive pair of these solutions (in x—space) by a line segment. This

is the desired piecewise linear path.

As before , this extension of Methods 1 , 2, and 3 (labeled iS , 2S , and

3S , where S stands for “Simplex”) would use their respective definitions of

t~., namely, (9), (10), and (26) (or (27)).

Al though the path generated by Method iS (I = 1,2,3) leads to the same

“most interio r” point (according to the respective distance norms described

~~

U 

—
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in Section 6) as i~~r gethod i}~ , it ( t .~ -~~~~ - t I ~ l l w  a “most interior” route

in the same sense. However, it doeu provioc an alternate route to this

“most interior” point which never ea~ es the. f’..sibie region for (1—3).

U 
8. Com~~~atio a1 E~~~ rience

In order to evaluate and compare these techniques , several FORTRAN

U 
codes were devel oped fo r  ~ CD(>-i,400 system. Since Phase 1 of the heuristic

algoriLhm developed by Ibaraki et ci [7] is based on Method 2 (and since

programming services ‘. ero no longer available when Method 3 bias developed),

F the focus was on testing variations of Method 2 (2, 2P , and 2 S ) ,  although

Method 1 (without extension) also was run on the problems .

U A total of 64 test problems were used. 22 of these are standard

test problems in the literature — Raldi ’s I3~ problems (#1—5 ,9) and Fixed

Charge problems (all 10), and Wools ey ’s /4—point and 5—point combinatorial

problems (all. 18 are reproduced by Trauth and t oisey [15]), plus two

problems (#4,5) given b .’ Petersen [9] and two (~ E ,9) given by Thompson [131.

The other /42 are randomly generated problems that were previously used by U

the authors. These consisl of the Type I problems (~i i—8 , and “Large”

30 x 60 , 60 x ~O , 60 x 60) , Type II problems (~i1—l6) , and Type III problems

(#2—5 ,8) discussed in 6I, as well as the Type V problems (#1—1 0) discussed

In ~2J . Of partic ular Interest are the type I and Ii problems , whose a1~

parameters are randomly generated integers from the intervals , [—40 ,59] ]  and

[0 ,99] ,  r e s p e c tIv e l y ,  and whose variables are gen~~~al integer variables (as

opposed to binary variables). All 64 problems were treated as pure integer
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programs, so n ’ = n.

Since the relevant consideration in evaluating Phase I methods Is

the resulting effectiveness of the overall heuristic procedure , these methods

were applied to the test problems in conjunction with fixed Phases 2 and 3.

These latter phases used Methods IA and 1 respectively, according to the

labels described in [6]. (The one minor exception is that Method 2A for

Phase 2 was used in conjunc t ion with Method 1 of Phase 1.) Phase 2 also

used th~ device discussed in both [6] and [5] (and labeled R3A ii [5]) of

generating multiple feasible solutions for Phase 3. (This involves re-

peat ing the Phase 2 search all along the interior path generated by Phase

U 1, and so provides a better test of this path.) A maximum oi 20 feasible

solutions (excluding any obtained directly from ~~~~~ were allowed from

Phase 2 , where these solutions need not be distinct. The algorithm pro-

ceeded to Phase 3 with each new Phase 2 solution only if that solution

differs from the immediately preceding ones and this was allowed at most 10

times.

Procedures 2—R3A—l , 2P—R3A—l , and l—R2A—l were app lied to all 64 test

problems. For 47 of these problems , they all found their best solction from

the Phase 2 feasible solution generated directl y from so that the

interior path generated by Phase 1 was irrelevant in these cases. For the

o t h et  17 test  p r o t ems , the  results regarding the best final solution (including

the point j n  the a l g or ~~thm at which this  so lu t ion  was found) are shown in

Table 1 for Procedures 2—R3A—l and 2P—R3A—l . (Procedure l—R2A—l is excluded

from the table since a detailed comparison with Procedure 2—R2A—l already is

26
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given in Table III of [6] for most of these same problems.) Procedure

2S—R3A—l was applied to 7 of these 17 problems , as also shown in Table I.

Ibaraki et al [7] also applied their heuristic algorithm to 9 of

these 64 test problems , with the comparative results shown in Table II

(Thompson — T, Fixed Charge = FC) . Times are given for apply ing the

simplex method to find (labeled LP), and then for the total of this

and all three phases of the heuristic procedure per se. However, it

should be noted that they used a different computer, a FACOM 230/60,

which they indicate corresponds very roughly to the IBM 360/65 and the

UN IVAC 1108. Furthermore , although they also generated multiple solutions

on these problems (except for FC—7 and FC—lO), they only allowed four

distinct feasible solutions from Phase 2 and only used the two best of

- these for Phase 3.
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9. Conclusions

Under some circumstances, Method 1 and (particularly) Method 2 for

Phase 1 can yield an exceedingly conservative ~~~~~ More seriously , Method

2 gives undue weight to largely irrelevant variables, and so can distort

the resulting direction of the line segment from ~~~~ Statistical

analysis suggests a promising new Method 3 which avoids these shortcomings.

All of these methods focus only on the functional constraints that

are binding at ~~~~~ Although this usually should be adequate , there are

situations where other constraints should influence the interior path.

The P (Section 6) and S (Section 7) extensions to piecewise linear interior

paths provide this capability. Furthermore, the P extension starts off on

the line segment for the original method (barring degeneracy), and so should

provide a comparable performance on ordinary problems as well. The S exten-

sion may be more convenient, but its other properties are less certain.

On the 64 test problems, the P extension led to a different best

solution from the original method on only four of them (better on two,

slightly worse on two), 80 it certainly doesn’t provide a dramatic improve-

ment. However , it is only designed to help on those occasional problems

where additional constraints should be considered, without hurting on others,

and it does seem to meet this objective. Furthermore, it should increase

the reliability of heuristic procedures in finding any feasible solution on

problems where this is very difficult. Since the price for adding this ex-

tension is a modest one, it should prove to be a worthwhile addition for at

least full—fledged production codes.

30
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On the other hand , the S extension often gives a d~ fferent best

solution (frequently worse bui sometimes better) I ron e i t h e r  the P exte n-

sion or the original method. it apparently t.indo ~o start otf the interior

path in a much different direction. Therefore, its main u.4eIuJ,ness may be

as a supplementary method to obtain additiona ! final solutions to try to

improve upon the original best solution t rom an,,LIer method .

Computat ional comparisons of Lli & ’ heurist ic proc~Hurcs tested here

with the one proposed by Ibaraki et al [7 1 sugges t that they have similar

performance capabilities.

U 
The reader is referred to [5] for an extensive comparison of Methods

1 and 2 (without extension), as well 2” some new options for all three phases

and comprehensive experimental results on various versions of these heuristic

procedures.
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